Exploring the Nerve Regenerative Capacity of Compounds with Differing Affinity for PPARγ In Vitro and In Vivo

Exploring the Nerve Regenerative Capacity of Compounds with Differing Affinity for PPARγ In Vitro and In Vivo

MLD Rayner, SC Kellaway, I Kingston, O Guillemot-Legris, H Gregory, J Healy & JB Phillips (2022). Exploring the Nerve Regenerative Capacity of Compounds with Differing Affinity for PPARγ In Vitro and In Vivo. Cells 12, 42 https://doi.org/10.3390/cells12010042

Read more »

Engineered neural tissue made using hydrogels derived from decellularised tissues for the regeneration of peripheral nerves

SC Kellaway, V Roberton, JN Jones, R Loczenski, JB Phillips, LJ White (2022). Engineered neural tissue made using hydrogels derived from decellularised tissues for the regeneration of peripheral nerves. Acta Biomaterialia https://doi.org/10.1016/j.actbio.2022.12.003

Read more »

New book! Peripheral Nerve Tissue Engineering and Regeneration

The complete first edition of this living reference work is now available online and in print, providing a comprehensive overview of key concepts and technologies for current and future nerve repair. Individual chapters are available to download and include topics such as the history of nerve repair, the nerve repair environment, models and evaluation, biomaterials, […]

Read more »

Discovery of novel hybrids containing clioquinol−1-benzyl-1,2,3,6-tetrahydropyridine as multi-target-directed ligands (MTDLs) against Alzheimer’s disease

X Li, T Li, P Zhang, X Li, L Lu, Y Sun, B Zhang, S Allen, L White, J Phillips, Z Zhu, H Yao, J Xu (2022). Discovery of novel hybrids containing clioquinol−1-benzyl-1,2,3,6-tetrahydropyridine as multi-target-directed ligands (MTDLs) against Alzheimer’s disease. European Journal of Medicinal Chemistry 244, 114841

Read more »

Considerations for the use of biomaterials to support cell therapy in neurodegenerative disease

VH Roberton & JB Phillips (2022). Considerations for the use of biomaterials to support cell therapy in neurodegenerative disease. International Review of Neurobiology https://doi.org/10.1016/bs.irn.2022.09.009

Read more »

A combined experimental and computational framework to evaluate the behavior of therapeutic cells for peripheral nerve regeneration

D Eleftheriadou, M Berg, JB Phillips & RJ Shipley (2022). A combined experimental and computational framework to evaluate the behavior of therapeutic cells for peripheral nerve regeneration. Biotechnology & Bioengineering https://doi.org/10.1002/bit.28105

Read more »

Novel inhibitors of AChE and Aβaggregation with neuroprotective properties as lead compounds for the treatment of Alzheimer’s disease

Y Liu, G Uras, I Onuwaje, W Li, H Yao, S Xu, X Li, X Li, J Phillips, S Allen, Q Gong, H Zhang, Z Zhu, J Liu & J Xu (2022). Novel inhibitors of AChE and Aβaggregation with neuroprotective properties as lead compounds for the treatment of Alzheimer’s disease. European Journal of Medicinal Chemistry, […]

Read more »

In silico framework to inform the design of repair constructs for peripheral nerve injury repair

S Laranjeira, G Pellegrino, KS Bhangra, JB Phillips & RJ Shipley (2022). In silico framework to inform the design of repair constructs for peripheral nerve injury repair. J R Soc Interface, 19, 20210824

Read more »

An alginate-based encapsulation system for delivery of therapeutic cells to the CNS

D. Eleftheriadou, R.E. Evans, E. Atkinson, A. Abdalla, F.K.H. Gavins, A.S. Boyd, G.R. Williams, J.C. Knowles, V.H. Roberton & J.B. Phillips (2022). An alginate-based encapsulation system for delivery of therapeutic cells to the CNS. RSC Adv. 12, 4005-4015

Read more »

Emily Atkinson

Project: Hydrogels for combined delivery of growth factor mimetics and small molecules in the treatment of central nervous system damage. Emily is a Transformative Pharmaceutical Technologies CDT student in the 2020 cohort. Her research focuses on synthesising peptide mimetics and small molecules for local delivery to the brain within a hydrogel formulation. The controlled-release, combination […]

Read more »
Contact us